
60 UNE T R A N S I T I O N  M E T A L - I S O L A N T  DANS Vo. ooNbo, loO2 

g6ne, ce qui est tr~s important du point de vue th60ri- 
que, il nous semble donc absolument n6cessaire de 
v6rifier ce point exp6rimentalement. A cet effet, des 
mesures de diffusion des rayons X aux petits angles, qui 
sont particuli~rement adapt6es au cas de VO2 dop6 au 
niobium, seront entreprisent prochainement. 

Nous tenons h exprimer notre gratitude 5. J. P. 
Pouget, H. Launois, et F. D6noyer pour de nombreuses 
discussions, et b. L. Descamps pour son assistance 
technique toujours tr~s comp6tente et tt6s appr6ci6e. 
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Core Deformation Studies by Coherent X-ray Scattering 
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'Core' deformation scattering factors have been determined for a series of diatomic molecules. These 
are defined as the difference between scattering factors calculated from corresponding molecular and 
atomic core orbital products. The core deformation scattering factors are too small to be measured by 
current X-ray diffraction methods. The core deformation scattering factors have been expanded in 
multipolar series about the nuclei. The major component of core deformation is a dipolar term, which 
is transferable for the same atom in different diatomic molecules. The multipole-expansion terms can 
be well represented by the Fourier-Bessel transforms of simple density-deformation multipole func- 
tions. The dipole density function makes a sizeable contribution to certain molecular physical properties 
(e.g. electric fields at the nuclei). Even though features of the core density deformation function are 
also present in the valence molecular orbital products, it is unlikely that total core deformation will 
be determined by X-ray diffraction measurements. The generalization of these findings to polyatomic 
systems is discussed. 

Introduction 

The approximation that coherent X-ray scattering by a 
core-electron distribution function is invariant to 
molecular formation is found in several models for 
electronic structure analysis of X-ray diffraction data 
(Stewart, 1968; Coppens, 1971). Previous theoretical 

* Alfred P. Sloan Fellow, 1970-1972. 

studies (Groenewegen, Zeevalkink & Feil, 1971; 
Bentley & Stewart, 1971) have suggested that core 
deformation effects are too small to be easily detected 
by X-ray diffraction intensity measurements. In the 
present report we will extend and, to some extent, 
modify these conclusions. 

In order to study 'core' or 'valence" properties, we 
need some criterion by which to define core and 
valence contributions to molecular (or atomic) one- 
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electron density functions. An experimental criterion 
is ionization potential. Koopmans' theorem (Koop- 
mans, 1934) has often been used to relate the ionized 
electron to a state function, which is characterized as 
either an atomic or a molecular orbital. The Hartree- 
Fock-Roothaan equations (Roothaan, 1951), 

Fc~ =e~Sc~, (1) 

provide a basis for differentiation of core and valence 
orbitals. In (1) F is the Fock Hamiltonian operator 
matrix, S is a matrix of overlap integrals among 
members of the atomic orbital basis set, c~ is the ith 
eigenvector of the expansion coefficients and e~ the 
corresponding eigenvalue. The molecular or atomic 
orbitals of the system are 

~ , =  ~ c, ,z ,=c[z,  (2) 
/z 

where Z is a vector of basis functions. Once the basis Z 
is specified, c~ and e~ are unique solutions to (1). For a 
first-row atom, the eigenvector with lowest eigenvalue 
is often called the core orbital. It is highly localized 
about the nucleus compared to the other atomic 
orbitals. For a diatomic molecule comprised of first- 
row atoms, the eigenvectors with the two lower eigen- 
values are designated the core-electron orbitals. Except 
in cases of symmetry with respect to internuclear 
exchange (e.g. Na), these core orbitals are rather 
localized in space about one of the nuclei; specifi- 
cally, the eigenvector with the lower eigenvalue is 
localized about the nuleus of higher atomic number. 

It was pointed out by Fock (1930) that a single 
determinant wavefunction is invariant to any unitary 
transformation of the atomic of molecular orbitals. 
Thus there are an infinite number of possible descrip- 
tions of the electronic structure in terms of orbitals. 
Several schemes have been proposed to transform the 
canonical molecular orbitals [i.e. the solutions to (1)] 
into localized molecular orbitals which correspond to 
chemical concepts of inner-shell electrons, lone pairs 
of electrons and bonds. Two intrinsic localization 
methods, which depend only on the self-consistent 
field wavefunction, are the energy localization pro- 
cedure of Edmiston & Ruedenberg (1963) and the 
density localization method of von Niessen (1972a). 
The latter approach is very appealing for partitioning 
the one-electron density function in a study of coherent 
X-ray scattering. Von Niessen's results for homo- 
nuclear diatomic molecules show that 96% of the 
density-localized inner-shell orbital products are 
comprised of the canonical, core molecular-orbital 
products (yon Niessen, 1972b). Although the valence 
molecular-orbital products possess only 4% of the 
core features (density with a large contribution near 
or on the nucleus), neglect of them could result in a 
large error for the estimate of an electrostatic force on 
the nucleus or of the electric field gradient on the 
nucleus. We will return to this point later. 

In the present study we compare X-ray scattering 
factors calculated from canonical, core molecular- 
orbital products and the corresponding canonical core 
atomic-orbital products for the isolated atom. The 
difference may be called the core deformation scat- 
tering factor; it is analyzed for possible contribution 
to molecular charge densities and physical properties 
obtainable from X-ray diffraction data. From the dis- 
cussion above we expect the general conclusions to be 
the same from a similar analysis of localized mo- 
lecular-orbital products. 

Computational procedure and molecular wavefunctions 

The molecules studied in the present paper are the first- 
row diatomic hydrides XH (X = B, C, N, O and F) and 
the 14-electron series N2, CO, and BF. Diatomic mol- 
ecules have been chosen because (i) existing wavefunc- 
tions are of higher quality than those for polyatomics, 
(ii) their X-ray scattering factors are more easily com- 
puted than those of polyatomics, and (iii) interpreta- 
tion of results is more straightforward. The wave- 
functions employed are those of Cade & Huo (1967) 
for the hydrides, Cade, Sales & Wahl for N2 [wave- 
function 2D of Cade, Sales & Wahl (1966)], and Huo 
for CO and BF [wavefunctions at experimental Re 
from Huo (1965)]. The atomic core orbitals are taken 
from the spin-restricted Hartree-Fock wavefunctions 
of Clementi (1965). For all of these wavefunctions, the 
atomic or molecular orbitals are linear combinations 
of Slater-type atomic-orbital basis functions, for which 
the expansion coefficients have been determined by the 
self-consistent field technique of Roothaan (1951). 
The computation of X-ray scattering factors for these 
wavefunctions reduces to evaluating the Fourier trans- 
forms of one- and two-center products of Slate>type 
orbitals (STO's). We have used the methods reported 
by Stewart (1969) and Bentley & Stewart (1973) for 
the one- and two-center integrals respectively. 

The function of interest is the core difference 
scattering factor 

zlf/~ (S) :f/z, tool(s) --f/~, atom(s) (3) 
with 

and 

fu'm°'(S) =2  1 I//~(r) exp (iS. r)gu(r)dr (4) 

O 
f/z, atom(S): 2 t (/)/~ (r) exp (iS. r)¢.(r)dr. (4') 

In (3), (4) and (4') S is the Bragg vector, [ISl= 
4~z sin 0/2], f..mol and f..atom are the respective scat- 
tering factors from the molecular and atomic core 
orbital products, * * ~ .  ~/. and and are corre- ¢.q&. ~/. ¢. 
sponding orbitals in the sense that their corresponding 
eigenvalues have the same ordering when comparing 
the molecule to the isolated atoms. The orbitals are 
also localized in the same region of space; for instance, 
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the electron-density distribution from ]~,~l 2 of CO 
closely resembles [rpls[ 2 of the isolated oxygen atom, 
and 1~,2~12 corresponds to I~01sl 2 of the isolated carbon 
atom. 

For this reason the scattering factors (3), (4) and 
(4') are computed by assigning the origin to the nucleus 
of localization. An exception is the case of N2; the 
charge-density distribution I~,~1 z+ I~/1~,,I ~ must be 
compared to Ifpasol~+l~o~sf where the origin for the 
appropriate form factors is chosen to be the bond mid- 
point. As defined in (3), Af,(S) is the change in core 
scattering induced by bond formation. Since rp, and 
¢/, give rise to similar density functions, we expect 
Afu(S) to be small. For this reason g/, and rp, should be 
as accurate as possible and close to each other in 
overall quality. All the wavefunctions used in this 
work are alleged to be near the restricted Hartree- 
Fock limit. Because of this, we feel able to make quan- 
titative interpretations of Af,, (3), with some confi- 
dence. The numerical accuracy of the wavefunctions 
is about one part in 105 . 

Results 

For all the molecules examined, there is core deforma- 
tion, as indicated by the non-zero values of [Af~(S)I, 
which for given [SI are generally much larger for S 
parallel to the internuclear vector R than for other 
orientations; see Fig. 1 for [Af~(S)I for NH and Fig. 2 
for [Af~(S) exp (+  iS .  R/2) + Af2~(S) exp ( -  iS .  R/2)I 
for CO. The molecules are the middle members of the 
hydride and 14-electron series and their Afu's illustrate 
features common to all members of the series. 

The magnitude of A f ,  can serve as a guide as to 
whether such deformation effects can be easily meas- 
ured by X-ray diffraction. For NH and CO the max- 
imum values are 

]Afl~lmax~ 3 X 10 -3 
and 

[Af~ exp ( +  iS .  R/2) 

+Af2~ exp ( - i S .  R/2)[max'-~ 6 x 10 -3, 

both at sin 0/2~0.75 A -~ where the total core scat- 
tering factors of the molecules are about 1-5 and 3-0 
respectively. We conclude in agreement with earlier 
studies (Groenewegen, Zeevalkink & Feil, 1971; 
Bentley & Stewart, 1971) that core deformation will 
be quite difficult to detect with current accuracy of 
X-ray diffraction. 

Chemical trends in Izlf~l are evident. Among the 
hydrides it is largest for BH (about 1.4 times the 
corresponding values for NH) and least for FH (about 
0.5 times the corresponding NH result), as if the core 
were more difficult to polarize in the more electro- 
negative atoms. For S parallel to R the maximum of 
IAf~l shifts from a sin 0/2 of 1-0A -~ for FH to 
0.55 A -~ for BH: the deformation density, which gives 
rise to Aft,, is progressively more diffuse as one moves 
to lighter members of the series (Fig. 3). 

Similar trends can be seen for the 14-electron sei'ies. 
Because the core molecular orbitals in BF and CO 
are relatively localized, it is instructive to display 
[Aft,I, for the heavier atom, and IAA,,I, for the lighter 
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Fig. 1. IAf~(S)[ for NH at selected orientations of S relative 
to R. r / '=S. R/ISI IRI. 
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Fig. 2. lexp(+iof)Af~(S)+exp(--ic~')Af~(S)] for CO at 
selected orientations of S relative to R. c=(½)[S[ [R[, r/'= 
2S. R/c. 
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Fig. 3. [Af~(S)[ for the diatomic hydrides with S parallel to 
R. 
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atom. These curves (Fig. 4) are closely similar to the 
hydride curves of Fig. 3. It is important to note that 
each core molecular-orbital product [e.g. [~ul~[ z for 
oxygen in CO] has a small contribution from one- 
center STO products • on the opposite center as well as 
contributions from a variety of two-center STO prod- 
ucts. Nonetheless, this decomposition, i.e. Afl,~ for O 
and Afz,, for C, affords us the same chemical inter- 
pretation that we found for the diatomic hydrides, 
where contributions from the STO's centered on the 
hydrogen nucleus are small. For example, Af~ for CO 
is about equal to Aft,, on OH, as is Afz,~ in CO (origin 
at C) to Af~ for CH. The phases of these core deforma- 
tion form factors are all nearly the same. When the 
angle between S and R is less than 70 °, the functions 
are predominantly imaginary. For CO, at S parallel to 
R, Afl,~ decreases monotonically f rom a phase of 90 to 
77.9 ° as sin 0/2 varies from 0 to 1.41 A -1. The range 
of phase for Aft, of •OH over the same domain of 
sin 0/2 is 90 to 84.4 °. By comparison Afz, for CO falls 
f rom 90 to 69.6 ° whereas the phases for Aft, for CH 
drop from 90 to 83.7 ° as sin 0//l varies from 0 to 
1 . 4 2 A  -1. Since boCh amplitudes (Figs. 3 and 4) and 
phases are comparable, we infer that there is a core 
deformation density function, roughly characteristic 
of the atom, which is transferable among diatomic 
molecules: The  preponderance of the imaginary 
component in the Af, 's is analyzed in the next section. 

Interpretation of core deformation factors 

One possible representation of the difference scattering 
factors, Aft(S), includes atomic monopole, dipole and 
quadrupole scattering factors (Stewart, 1971), 

Afu(S) ~ PoOl')go(S) +- iPl(ll')gl(S) - Pz(tl')gz(S) (5) 

where i is l / - 1 ,  P~ is the lth order Legendre poly- 
nomial in the direction cosine of S with respect to R 
(i.e. ~1') and gz(S) are the Fourier coefficients of the 

4.0 

3.0 

x 

2.0 

1.0 

0 I I I I 
QO 0.25 0.5.0 0 .75 1.00 1.2.5 

sin O / X , A  -~ 

Fig. 4. Idf,~(S)l and IAA~(S)I for CO and BF with S parallel to 
R. 

0 

radially dependent multipole deformation electron- 
density function. The upper sign for the dipole term 
[Pl(r/')] pertains to the Af,(S) on center a as the origin 
(which we take as the origin of R) and the lower sign 
applies to those Af,(S) (BF and CO, only) with origin 
on center b (which we take as the terminus of R). By 
the method of least squares, the functions go(S), 
gl(S) and g2(S) have been determined for selected values 
of S. Integration of the trial function (5) on the Af,(S) 
over r/' and ~a0 (the azimuthal angle about the inter- 
nuclear axis) has been done analytically. Thus the 
explicit solutions are: 

1 

go(S) = Afu(S)dll'/2, 
- 1  

gl(S) = ___ fu(S)r/'dr/'/(2) 
--1 

1 

g ~ ( S ) =  - f.(s)e2(~')~'/(~). 
--1 

and 

(6) 

[For the ease of doing these integrals, see Stewart 
(1969) and Bentley & Stewart (1973).] Note that the 
atomic core scattering factor, (4'), makes no contribu- 
tion to gl(S) and gz(S). For the special case of N2, the 
following set of linear equations must be solved for 
each value of S: 

i 1 AFcor~ cos (cq')drf =[jo(2C)+ 1]g0(S) 

+jl(2c)gl(S) +jz(2c)g2(S) 

i , AFooroPI(~') ( c q ' ) d q ' =  s i n  +jl(2c) go(S) 
- 1  

+ (½) [1 -j0(2c) + 2jz(Zc)]gl(S) 

--(½) [2j1(2c)- 3j3(2c)]g2(S) (7) 

i 1 AF¢orePz(rl') cos (cr/')dr/'= +jz(2c)go(S) , 
--1 

_(1) [2j1(2c)-- 3j3(2c)]gl(S)+(3-~) [18J4(2c) 

- lOjz(2c)+ 7(j0(2c) + 1)]gz(S) 

where AF¢ore=Af~,o+Af~,,,, c=(z2) ISI[RI and the 
•(2c) are spherical Bessel functions. ". 

As anticipated from the large imaginary component, 
in all cases studied here, gl(S) accounted for most of 
the amplitude of Af ,  over the range of sin 0/2 con- 
sidered (0_<sin 0/2_< 1-5 A-l ) .  A plot of several gx(S) 
is shown in Fig. 5 where the curves labeled C and O 
are extracted from A f2, and Aft,, respectively, of the 
CO molecule; the curve for N is from Aft, of NH. Note 
how the maximum of each reflects a more localized 
dipole density function as the atomic number of the 
atom increases. The Fourier coefficients of the mono- 
pole density function, go(S), are about an order of 
magnitude smaller than gl(S), and gz(S), the Fourier 
transform of a radial quadrupole density function, 
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ranges from slightly smaller than go(S) to negligible. 
A representative set of go(S) and g2(S) are plotted in 
Fig. 6. These results are the solutions of (6) for CO 
and NH. The same prominent chemical trend is not so 
evident as in the dipole case (see Fig. 5). 

Coefficients of a multipolar expansion in reciprocal 
space are the Fourier-Bessel transforms of the corre- 
sponding density functions in direct space. Thus we 
may interpret the gz(S) in terms of density deformation 
functions, Q~(r), which give rise to them. In this sense, 
go is the scattering difference induced by an overall 
expansion or contraction of the spherically symmet- 
rical component of the core density, gt is the scattering 
due to dipole polarization of core charge density along z 
the bond axis, and gz arises from a density shift to the 
region along the molecular axis from a n-like toroid C 
surrounding the nucleus in question. The function x 
go(S) is negative for all S for all core orbital products 
examined (see Fig. 6). This indicates that the core O 

orbital product is slightly more diffuse in a molecule 
than in the corresponding free atom. From other 
studies of density-difference contour maps for the 
diatomic hydrides (Bader, Keaveny & Cade, 1967) and 
for the 14-electron series (Bader & Bandrauk, 1968), it 
is evident that the total charge density, within a sphere 
of 0.1/~ or less about the first-row atom nucleus, is 
greater for the isolated atom than for the molecule. 40 
The go(S) functions here reflect the core-density con- 
tributions to this feature. This rather general redistribu- 
tion of charge on formation of a chemical bond may 30 
affect the Debye-Waller parameters that are deter- 
mined in routine structure analysis. For an example 7~ 
with powdered-diamond diffraction data, see Stewart ~ 20 
(1973b). 

We find that g~(S) is positive for all core orbital 
products investigated and, further, that it can be well lo 
represented analytically by the function, 

gt (S)=SCZS/ (Z  2 + $2) 3 (8) 

where C and Z are parameters characteristic of each 
core orbital product. The dipolar term iPt(rf)gt(S) 
with gt(S) given by (8) corresponds to scattefi.ng by.the 
density function 

el(r)=(4n)-tCPt(cos O)r exp ( - Z r )  . (9) 06 

Note that (9) is the form of a ls2po STO product. ~ 04 
The function g2(S) is positive (or effectively zero) for ~ 0z 

all S for the orbital products considered. This corre- 
sponds to an increase of density along the molecular o 
axis at the expense of the off-axis regions. We find that % -oz 
g2(S) can be reasonably represented analytically by 
the simple function ~o-°4 

gz(S)=48DXSZ/(X z + SZ) 4 (10) -06 

where D and X are parameters characteristic of each -os 
core orbital product. The density function that corre- 
sponds to -Pz(~')g2(S) is 

Qz(r)=(4n)-lDP2(cos O)r z exp ( - X r ) .  (11) 

Such a function can arise from a 2p.2po or a ls3do 
STO product. In Table 1 the parameters Z, C, X, and 
D from (8) and (10) are listed for the diatomics studied 
in this work. With the exception of B in BH and BF, 
Z and X are characteristic of the atom to which they 
refer and are almost independent of molecular en- 
vironment. It is these parameters [Z from (8) and X 

Table 1. Parameters of  core deformation 
density functions 

The terms Z, C, X and D are defined by equations (8)-(11). 

B C N O F 
8.05* 9.90 12.0 13-7 15-5 
6.75 9.23 10.7 12-6 15.0 
7.92 15.4 27.8 37-5 50.1 
4.27 12-9 17.0 26-9 34.8 
5.34 7-34 8.65 9-44 -1" 
6.23 7.80 8.1 9-75 - 
0.121 0.463 0.545 0.296 -I" 
0.994 2.81 1-17 0.855 - 

* The upper quantity is appropriate for the atom in question 
(here B) bound to hydrogen; the lower for the atom bound to 
another first-row atom (B to F, C to O, N to N). 

t Neither FH nor BF exhibits a significant quadrupolar de- 
formation at F. 

0 I I I I I I 
0 . 0  0 . 2 5  0 . 5 0  0 . 7 5  | . 0 0  1 . 2 5  1 . 5 0  

sin 0 / ) , , ~ .  -1 

Fig. 5. The dipolar radial X-ray scattering component [gl(S)] 
for N in NH and C and O in CO. 

C 

,,,-N 

I I I I I I I 
0 .0  0 . 2 5  0 . 5 0  0 . 7 5  1 .00  1 .25 t . 5 0  

sin O / h = , ~  - I  

Fig. 6. The spherical and quadrupolar radial X-ray scattering 
components [g0(S) and g2(S)] respectively for N in NH and 
C and O in CO. 
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from (10)] which determine the shape of gt and g2. 
Of special interest, the g~(S) 'dipole' scattering factors 
have maxima at much larger sin 0/2 values than the 
corresponding valence dipole scattering factors (Stew- 
art, 1971). For example, a nitrogen-atom valence 
dipole scattering factor peaks at 0.21/k -~ in sin 0/2, 
but our nitrogen dipole form factor has a maximum at 
0.77/~-1. We name gl(S)  a core density dipole scat- 
tering factor. Similarly we can characterize gz(S) as a 
core quadrupole density function. 

Q(core) is less than 0.00025 ea~ for all core orbital 
products considered; this is 'negligible in comparison 
to total local quadrupole moments for these mol- 
ecules which range from several tenths to several 
ea~. On the other hand, q(core) can be as large as 
0.02 eao 3, which is rather small in comparison with 
total local electric-field gradients where the magnitudes 
lie between 0.40 and 2.87 eao 3. Values of e(core) and 
q(core) for the core orbital products considered are 
given in Table 2. 

Molecular properties in core deformation 

Several molecular, physical properties can be deter- 
mined from electron-density functions that are ex- 
tracted from X-ray diffraction data (Stewart, 1972). 
From the density functions of (9) and (11), we can 
compute core-deformation contributions to physical 
properties. Two properties which depend on local 
atomic dipole density functions are the local dipole 
moment , /z ,  and the local electric field, e. The corre- 
sponding core deformation contributions, in terms of 
(9), are 

lu(core)=SC/Z 5 in units of eao (12) 

and 
e(core) = C/3Z  2 in units of ea~ z (13) 

where e is 1.602 x 10 -19 coulomb, and a0 is 0.529167 x 
10 -1° m. For all cases studied, p(core) is less than 
0-0025 eao, which is negligible compared to the local 
molecular dipole moments, which are of the order of 
0.5 eao. We find that e(core) lies between 0.03 and 
0-07 eao 2. The total electric field at any nucleus should 
vanish for a Hartree-Fock wavefunction at the nuclear 
configuration for which the Hartree-Fock energy is a 
minimum (Hurley, 1954; Hall, 1961). The near 
Hartree-Fock wavefunctions employed here do not 
satisfy this theorem exactly, but give residual fields at 
the nuclei between 0.006 and 0.03 eao 2. It is evident 
that if the core contribution is omitted from an electric- 
field calculation, the resultant field will be comparable 
in magnitude and opposite in direction to the core 
component. The force on a nucleus is proportional to 
the field at that nucleus. For the diatomic molecules 
studied here, neglect of core contributions gives rise to 
apparent forces which would, if they were real, tend to 
stretch each molecule out o f  its equilibrium configura- 
tion. 

Properties that depend on the local quadrupole 
density function are the local quadrupole moment Q 
and the local electric field gradient, q. The core con- 
tributions to these properties, in terms of the density 
function (11), are 

and 

q(core )=2D/5X  2 in units of eag 3 (14) 

Q(core) = 144D/X 7 in units of ea~. (15) 

Table 2. Core contributions to local electric fields and 
their gradients 

Values are calculated from equations (13)and (14) with the 
parameters of Table 1. 

Atom B C N O F 
Electric field 0.0407* 0.0524 0.0644 0.0666 0.0695 

(eao 2) 0.0312 0.0505 0"0495 0"0565 0.0516 
Electric field gradient 0.0017 0.0034 0.0036 0.0013 - t  

(ea~ 3) 0.0102 0.0185 0-0071 0-0036 -i" 

* The upper quantity is appropriate for the atom in question 
(here B) bound to hydrogen; the lower for the atom bound to 
another first-row atom (B to F, C to O, N to N). 

t F has no detectable quadrupolar core deformation, and 
thus no core contribution to the electric field gradient. 

Implications of core deformation for valence 
density analysis 

It appears from the results of the previous section that 
core deformations of the sort encountered here, while 
too small to be easily measured by single-crystal X-ray 
diffraction techniques, cannot be neglected if reliable 
values of certain physical properties are sought. In 
order to discover whether the charge-density informa- 
tion implicit in Af ,  is completely lost, we must deter- 
mine the efficiency with which the density functions (8) 
and (10) project into the basis functions that span the 
valence charge density. In the valence model we have 
been investigating (Stewart, 1971, 1973a), both the 
dipolar and the quadrupolar radial density functions 
are given by 

~o(r) = (4~/3)r 2 exp ( -  2~r) (16) 

where ~ is a standard molecular value recommended 
by Hehre, Ditchfield, Stewart & Pople (1970). A 
measure of the linear dependence of (8) or (10) on 
Qo of (16) is given by the projection coefficient 

S S S p l =  ~01(r)Qv(r)r2dr/ [ (Q1)2r2dr (~%)2r2dr]l/2 (17) 
o o o 

and a corresponding expression for P2 where Q2 is 
substituted for Q1. If we set a = Z / 2 (  and b = X / 2 ( ,  

A C 30A - 5 
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where X and Z are from Table 1 and ff is a standard 
molecular exponent, then 

pl(a)=(5/6)l/2c?/212/(1 + a)] 6 (18) 

and 
pz(b)=b7/2[2/(1 + b)] 7. (19) 

Maximum and minimum values ofpl(a)  are 0.453 (for 
B in BF) and 0.217 (for F in FH); the average p~(a) is 
0-271. For p,, 0.564 is the minimum (for C in CO) and 
0.752 the maximum (for B in BH), and 0.625 the 
average. A summary of results is given in Table 3. The 
figures indicate that a substantial part of the quadru- 
pole core deformation will be represented by the 
valence quadrupole term in a least-squares analysis, 
but that the content of Q~(r), (8), will, for the most 
part, be lost. As pointed out in other studies on 
density basis functions (Stewart, 1971, 1973a), analysis 
with generalized X-ray scattering factors, where the 
maximum in sin 0/2 is restricted to the Ewald sphere, 
will usually lead to somewhat larger projection coeffi- 
cients than those shown in Table 3. 

Table 3. Core vs. valence density function 
projection coefficients 

The quantities ~, a, b, pl and P2 are defined by equations (18) 
and (19) and their accompanying text. The ~ values are taken 
from Hehre, Ditchfield, Stewart & Pople (1970). 

Atom B C N 0 F 
( 1"50 1"72 1"95 2"25 2"55 
a 2"68* 2"88 3"08 3"04 3"04 

2"25 2"68 2"74 2-80 2-94 
b 1"78 2"13 2-22 2"10 - t  

2"08 2"27 2"08 2" 17 -I" 
Pl 0"277 0"241 0"211 0"217 0"217 

0"376 0"277 0"265 0"255 0"231 
Pz 0"752 0"613 0"581 0"624 -~ 

0"632 0-564 0.632 0-599 - t  

* The upper quantity is appropriate for the atom in question 
(here B) bound to hydrogen; the lower for the atom bound to 
another first-row atom (B to F, C to O, N to N). 

t No values are determined here because F has no signifi- 
cant quadrupole deformation. 

There is another point which was mentioned in the 
Introduction and which must now be dealt with. The 
separation of electron density into core and valence 
parts, as we have done here via (3), (4) and (4'), is a 

formal rather than a physical partitioning. Each of the 
wavefunctions studied here contains in its valence 
orbital products terms that give rise to a density dis- 
tribution similar to that obtained by a Fourier analysis 
of gl [equation (6)]. This density component will fail 
to project into the valence model (16) in the same way 
that Ql(r) failed. An estimate of the dipole core density 
function [such as (8)] was made by projecting all 
ls2p~ type STO products on the same center into the 
dominant core deformation function, (8), in order to 
weight the contribution of each one (eight in all for 
each diatomic hydride). We find that the valence 

orbital products (1~2=1 z and 1~3~1 z for the hydrides) 
taken together, have a density component, like (8), with 
an electron population somewhat less than the core 
orbital product alone. This means, for example, that 
the electric field values in Table 2 should be mul- 
tiplied by 1.5 to 2, since the core dipole component from 
the valence molecular-orbital products has the same 
parity as the main component from I~,1~12. 

The foregoing considerations indicate that the pre- 
sent valence scattering model (Stewart, 1971, 1973b) 
sacrifices an important charge density feature (which 
is distributed among both the core and valence orbital 
products) for want of a ls2p, density basis function. 
If such a function were to be added to the model, the 
representation of physical properties in diatomic mol- 
ecules would be improved, provided, of course, that 
the model contains no more serious deficiencies. 

The results and discussions in this paper are ap- 
plicable to diatomics consisting of first-row atoms, 
but we make some generalizations to more complex 
systems. The carbon atom in methane or in diamond 
has Tn(43m) site symmetry; local dipole and quadru- 
pole polarizations are symmetry forbidden. In the 
ethane molecule, the charge about the carbon atom 
has an approximate tetrahedral environment [actually 
it is C3o(3m) for both the staggered and the eclipsed 
configurations], so it will probably have less dipole 
core deformation than CH. We visualize a polarization 
vector from one carbon toward the other, and another 
vector from the carbon toward the geometric center 
of the methyl protons; these opposing vectors will 
partly cancel. For most atoms forming two or more 
chemical bonds among nonhydrogen atoms, the exact 
or approximate site symmetry of the potential (largely 
due to neighboring nuclei, screened by other electrons) 
will force the dipole deformation function to vanish or 
at least be smaller than in a comparable diatomic mol- 
ecule. One case of multipole bonding where dipole 
core polarization will probably not diminish is that of 
terminally bonded atoms, of which the most prominent 
example is a carbonyl oxygen. Such atoms will prob- 
ably require the ls2p density function discussed above 
for a more appropriate representation of charge 
density and local physical properties. It may be 
worth while to incorporate this feature into the 
generalized X-ray scattering factors for electron pop- 
ulation analysis of organic molecular crystals (Stew- 

art, 1971). The rather small amplitude of scattering 
compared to the total scattering will most likely make 
it difficult to detect the core dipole density electron 
population from present-day X-ray diffraction data. 

Conclusion 

The products of canonical core molecular orbitals of 
first-row diatomics closely resemble the canonical 
core atomic orbital products of their constituent isolated 
atoms. When the X-ray scattering amplitudes of these 
density functions are compared and analyzed, we find 
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that (i) the spherically symmetric component of the 
molecular core charge is more diffuse than for the 
isolated atom, (ii) the molecular core charge has a 
dominant dipolar polarization which is clearly evident 
in the scattering amplitudes and phases, and (iii) a 
quadrupolar density function, with a much smaller 
electron population than the dipolar term, gives rise 
to a small part of the structure in the core molecular 
density scattering factor. We have emphasized that 
these same core deformation terms are also present jn 
products of the valence molecular orbitals and that the 
core molecular orbital product alone accounts for 
about one-half to two-thirds of the total of such 
features. The deformation terms have an amplitude of 
scattering which is no more than 1% of the total mo- 
lecular scattering for the range of sin 0/2 studied in this 
work (0 < sin 0/2 < 1"5 A- l ) .  Nonetheless, these den- 
sity deformations make appreciable contributions to 
certain physical and molecular properties (in particular 
electric fields). Quadrupole core deformations can, to 
some extent, be absorbed by a valence scattering 
model; dipolar deformation will not be accommodated 
by this model. We have argued that because of the 
increased effective site symmetry of a multiply bonded 
atom, most core deformation terms for it will be 
smaller than for an atom in a diatomic, whereas for a 
terminally bonded atom, such as an oxygen in a 
carbonyl or amide group, they will probably be about 
the same. We therefore mildly suggest that the density 
functions in Table 1 be tried for the construction of a 
dipole generalized X-ray scattering factor in the 
charge density analysis of a terminally bonded atom. 
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This paper describes a procedure for the automatic interpretation of electron-density maps of organic 
structures whichzmakes use of the restrictions on the values of the intramolecular bond distances and 
angles. It is also shown how some chemical-data processing algorithms can be used as an efficient means 
of introducing chemical information in the process of structure determination. 

The last step of a crystal strficture determination by play procedures make this easier it is still a time- 
di.[.rect methods which requires human intervention is consuming task, especially when no easily recognizable 
the interpretation of2~ maps. Though graphical dis- fragment can be found. We wish to report here some 
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